油气人工智能 | 基于改进时序网络的钻进参数可解释实时预测
油气人工智能 | 基于改进时序网络的钻进参数可解释实时预测
实时准确预测钻进参数变化趋势对现场钻井作业具有重要参考价值。针对智能模型在现场作业应用中面临的钻进参数可获取性限制,提出了一种基于注意力时域卷积网络(AT-TCN)的钻进参数超前预测方法。该方法不仅考虑了录井曲线随深度变化的趋势和自相关性,同时嵌入高拓展性的注意力机制模块,使模型更好地捕捉钻进参数的动态变化。利用现场钻井数据集测试,评估了模型在预测4种关键钻进参数(扭矩、立管压力、钻井液当量密度和