摘 要:在深度学习领域,解决实际应用问题往往需要结合多种模态信息进行推理和决策,其中视觉和语言信息是交互过程中重要的两种模态。在诸多应用场景中,处理多模态任务往往面临着模型架构组织方式庞杂、训练方法效率低下等问题。综合以上问题,梳理了在图像文本多模态领域近五年的代表性成果。首先,从主流的多模态任务出发,介绍了相关文本和图像多模态数据集以及预训练目标。其次,考虑以Transformer为基础结构的视
摘 要:深度学习技术的广泛应用有力推动了医学图像分析领域的发展,然而大多数深度学习方法通常假设训练集和测试集是独立同分布的,这个假设在模型临床部署时很难保证实现,因此常出现模型性能下降、场景泛化能力不强的困境。基于深度学习的域自适应技术是提升模型迁移能力的主流方法,其目的是使在一个数据集上训练的模型能够在另一个没有或只有少量标签的数据集上也获得较好结果。由于医学图像存在着样本获取和标注困难、图像性
摘 要:基于视频监控系统网络化和智能化发展带来的风险,研究其隐蔽式网络攻击问题,目的在于调研大量隐蔽式网络攻击案例,总结针对视频监控系统的隐蔽式攻击特异性。结合蜜罐技术在检测网络攻击行为和发现攻击线索等方面的独特优势,梳理针对视频监控系统隐蔽式攻击的蜜罐防御方法。针对监控视频蜜罐在视觉场景部署上的不足,介绍了一种深度场景伪造防御框架,将生成式AI大模型与视频监控蜜罐相结合。最后提出了面向视频监控系
摘 要:针对传统制造业供应链管理信息不透明、数据流易窜改以及追溯能力不足等导致的供应链组织间缺乏信任、机会成本增加的问题,利用区块链技术设计了可信制造供应链溯源(trusted manufacturing supply chain traceability,TMSCT)框架。首先,设计了一种主从链协作机制,帮助用户在保护隐私的同时进行可信合作;其次,通过链上链下存储模式减轻分布式节点的存储压力;最
摘 要:针对目前应用于联盟链中的实用拜占庭(PBFT)共识算法可扩展性不足、通信开销增长过大、难以适用于大规模网络节点环境等问题,提出了一种基于改进Raft共识算法和PBFT共识算法的双层共识算法(DL_RBFT)。首先将区块链中的节点分成若干小组,组成下层共识网络,然后小组的组长再构成上层共识网络,形成一个双层共识网络结构;在下层共识网络的小组内部引入监督机制和声誉机制来改进Raft共识算法,在
摘 要:区块链技术在电子健康记录安全共享上具有巨大潜力,然而,目前的解决方案存在着如存储空间大和共识效率低等问题。为此,提出了一种基于区块链和亲友节点的新方案。首先,采用分布式文件系统将用户完整的电子健康记录存储在线下服务器,并构建用户的亲友节点集,每个用户的数据由其亲友节点冗余存储,链上仅存储区块头信息,降低了存储空间;其次,设计了基于多签名技术的数据访问机制,采用Shamir秘密共享机制将用户
摘 要:针对车联网联邦学习服务难以满足用户训练个性化模型的需求,提出一种创新性的车联网联邦学习模型定制化服务框架。该框架采用了一种融合设备贡献度和数据集相似性的联邦学习聚合算法,实现了个性化联邦学习。该算法通过不同权重分配方式和相似性计算,使得不同用户可以根据自己的需求和数据特征,选择合适的模型训练方案。该框架还提出了一种双重抽样验证方法,解决了模型性能和可信度问题;此外,利用智能合约支持数据协作
摘 要:浮动车GPS数据作为交通信息处理的基础,随着被监控车辆数量的高速增长,产生了海量GPS数据,对地图匹配提出了挑战。为了解决传统匹配方法难以满足匹配效率和精度的不足,提出一种针对海量GPS数据的实时并行地图匹配算法,能够同时保证较高匹配精度和运算效率。为构建一种面向实时数据流的高效、准确实时地图匹配算法,首先通过引入速度、方向综合权重因子对依赖历史轨迹的离线地图匹配算法进行重构,进而引入Sp
摘 要:立体轨道交通系统的车辆调度方法还未见报道,已有车辆调度算法的实时性较差。针对立体轨道交通车辆的调度问题,研究了一种结合高、低频车站判定的订单分配算法和一种结合时间窗的Dijkstra路径规划算法,即智能调度算法,以提高车辆的运行效率。首先,使用订单分配算法为订单选择合适的执行车辆,减少乘客的等待时间。其次,在订单分配算法的基础上增加了高、低频车站的判定,提前给高频车站调度车辆,以保证供需平
摘 要:最近,强化学习序列推荐系统受到研究者们的广泛关注,这得益于它能更好地联合建模用户感兴趣的内动态和外倾向。然而,现有方法面临同策略评估方法数据利用率低,导致模型依赖大量的专家标注数据,以及启发式价值激励函数设计依赖反复人工调试两个主要挑战。因此,提出了一种新颖的异策略模仿-强化学习的序列推荐算法COG4Rec,以提高数据利用效率和实现可学习的价值函数。首先,它通过异策略方式更新分布匹配目标函
摘 要:多智能体系统在自动驾驶、智能物流、医疗协同等多个领域中广泛应用,然而由于技术进步和系统需求的增加,这些系统面临着规模庞大、复杂度高等挑战,常出现训练效率低和适应能力差等问题。为了解决这些问题,将基于梯度的元学习方法扩展到多智能体深度强化学习中,提出一种名为多智能体一阶元近端策略优化(MAMPPO)方法,用于学习多智能体系统的初始模型参数,从而为提高多智能体深度强化学习的性能提供新的视角。该
摘 要:为了解决谣言检测中由于缺乏外部知识而导致模型难以感知内隐信息,进而限制了模型挖掘深层信息的能力这个问题,提出了基于知识图谱的多特征融合谣言检测方法(KGMRD)。首先,对于每个事件,将帖子和评论共同构建为一个文本序列,并利用分类器从中提取情感特征,利用ConceptNet基于文本构造其知识图谱,将知识图谱中的实体表示利用注意力机制与文本的语义特征进行聚合,进而得到增强的语义特征表示;其次,
摘 要:函数依赖(FD)挖掘方法通常专注于发现所有满足函数依赖语法特征的结果,在数据不完整的情况下常导致大量成立但无意义的FD。针对挖掘无效FD的问题,提出基于相关性分析的不完整数据FD挖掘方法。利用概率图模型构建具有缺失值属性的概率分布,通过相关性分析捕捉属性之间的关联关系,避免枚举所有可能性,以挖掘具有统计学意义的FD。实验结果表明,该方法可以更准确地定位到有意义的FD,与最先进的FD发现方法
摘 要:空间并置(co-location)模式挖掘旨在发现空间特征间的关联关系,是空间数据挖掘的重要研究方向。基于列计算的空间并置模式挖掘方法(CPM-Col算法)避开挖掘过程中最耗时的表实例生成操作,直接搜索模式的参与实例,成为当前高效的方法之一。然而,回溯法搜索参与实例仍是该方法的瓶颈,尤其在稠密数据和长模式下。为加速参与实例的搜索,充分利用CPM-Col算法搜索参与实例时得到的行实例,在不增
摘 要:知识追踪通过对知识点的表示来描述习题,以此建模知识状态,最终预测学习者的未来表现。然而目前的研究在知识点的表示方面既没有建模历史知识点对当前知识点产生的时间关系上的影响,又未能刻画习题内部各知识点之间产生的空间关系上的作用。为了解决上述问题,提出了时空相关性融合表征的知识追踪模型。首先,以知识点之间的时间相关程度为基础,建模历史知识点对当前知识点的时间作用;其次,利用图注意力网络建模习题所
摘 要:针对现有稠密文本检索模型(dense passage retrieval,DPR)存在的负采样效率低、易产生过拟合等问题,提出了一种基于查询语义特性的稠密文本检索模型(Q-DPR)。首先,针对模型的负采样过程,提出了一种基于近邻查询的负采样方法。该方法通过检索近邻查询,快速地构建高质量的负相关样本,以降低模型的训练成本。其次,针对模型易产生过拟合的问题,提出了一种基于对比学习的查询自监督方
摘 要:RB (revised B)模型是一种在约束可满足问题中具备精确相变增长域的随机实例模型,提出两种高效的启发式局部搜索算法用于解决RB模型生成的大值域约束可满足问题。首先为基于权重指导搜索的W-MCH算法,该算法通过约束判断和违反约束数计分来进行搜索,并引入了基于约束违反概率的权重计算公式,根据其关联的约束权重进行修正,再对变量进行迭代调整。然后提出最小化值域的MDMCH算法,该算法通过记
摘 要:近年来图神经网络与深度强化学习的发展为组合优化问题的求解提供了新的方法。当前此类方法大多未考虑到算法参数学习问题,为解决该问题,基于图注意力网络设计了一种智能优化模型。该模型对大量问题数据进行学习,自动构建邻域搜索算子与序列破坏终止符,并使用强化学习训练模型参数。在标准算例集上测试模型并进行三组不同实验。实验结果表明,该模型学习出的邻域搜索算子具备较强的寻优能力和收敛性,同时显著降低了训练
摘 要:针对灰狼优化算法(GWO)在求解复杂优化问题时存在后期收敛速度慢、易陷入局部最优的不足,提出了一种渐进式分组狩猎的灰狼优化算法(PGGWO)。首先,设计了非线性多收敛因子以增强全局勘探能力、避免局部最优;其次,提出了渐进式位置更新策略,该策略引入长鼻浣熊的包围策略和动态权重因子,前者在提高收敛精度和速度的同时避免局部最优,后者则动态地提升算法的收敛速度及全局寻优性能;最后,通过与标准GWO
摘 要:针对旅行商问题(TSP)提出了一种基于莱维飞行转移规则的蚁群优化算法。该算法结合了基于莱维飞行和蚁群系统算法(ant colony system,ACS)的转移规则,形成了一种动态权重的混合转移规则,该策略能够有效地帮助算法跳出局部最优,增强全局搜索能力。此外,随机多路径优化3-opt策略通过随机抽取部分路径与当前最优路径组合,增加算法的多样性。当算法陷入停滞时,采用信息素平均随机重置策略
摘 要:为进一步优化重叠社区检测算法,提出了一种新的基于度和节点聚类系数的节点重要性定义,按照节点重要性降序更新节点,固定节点更新策略,提高社区检测的稳定性。在此基础上,提出了一种基于图嵌入和多标签传播的重叠社区检测算法(overlapping community detection based on graph embedding and multi-label propagation algo
摘 要:为了有效解决电液伺服系统主从控制结构中主缸和从缸PID控制器的参数设定问题,提出了一种基于多目标优化算法与模型仿真相结合的求解方法。在该求解方法中,将参数设定问题建模为了一个多目标优化问题,其目标空间包括主从同步误差、调节时间、超调量和积分平方误差四个维度,建立了主从结构的PID控制仿真模型,来获取目标空间的目标值。改进了MOEAD算法,通过亲代选择以及子代生成算子选择强化算法子代的多样性
摘 要:随着纠删码在分布式存储系统中的实际应用,纠删码为存储系统提供了更加优秀的存储效率,但当节点丢失时,相较于传统副本技术更多的网络传输带宽开销成为了造成系统性能瓶颈的关键因素。为了解决MDS编码高带宽开销对系统性能的影响,一类新型编码方案——分组码被应用在分布式存储系统中,相较于传统MDS编码能够有效地降低节点修复时的数据传输量,从而减少网络带宽需求。在Pyramid分组码的基础上进行层次扩展
摘 要:为解决边缘服务器放置过程中资源浪费和延迟增加的问题,对边缘服务器放置方案的用户密度和平均访问时间进行分析建模,将其描述为多目标优化问题。设计了一种基于用户密度和平均访问时间的边缘服务器放置方案,并提出了一种多目标海马遗传算法(MOSGA)解决该问题。MOSGA首先使用多目标优化算法的思想对海马优化(sea horse optimizer,SHO)算法进行改进,使SHO算法能够适用于多目标优
摘 要:针对在杂乱、障碍物密集的复杂环境下移动机器人使用深度强化学习进行自主导航所面临的探索困难,进而导致学习效率低下的问题,提出了一种基于轨迹引导的导航策略优化(TGNPO)算法。首先,使用模仿学习的方法为移动机器人训练一个能够同时提供专家示范行为与导航轨迹预测功能的专家策略,旨在全面指导深度强化学习训练;其次,将专家策略预测的导航轨迹与当前时刻移动机器人所感知的实时图像进行融合,并结合坐标注意
摘 要:为提升自动导引小车在“货到人”仓库中的运行效率,针对AGV-托盘任务分配、单AGV路径规划及多AGV碰撞避免三个子问题的研究,以最小化AGV行驶距离为目标构建数学模型。首先,根据AGV与托盘的双边匹配问题特点设计改进的匈牙利算法求解匹配结果。其次,提出一种二维编码机制的改进遗传算法(improved genetic algorithm,IGA),采用一种局部搜索算子代替原变异操作,在提高算
摘 要:在多机器人巡逻任务中,由于通信距离的限制,单个机器人很难获得全局信息。然而,现有的大多数多机器人分布式巡逻算法都要求每个机器人获得其巡逻区域的全局信息进行决策。因此,考虑到通信半径约束和局部信息约束,为了通过相邻机器人之间的交互完成巡逻任务,基于离散时间一致性理论提出了两种巡逻算法。算法1使用全局信息进行决策,算法2基于离散时间一致性理论实现局部信息对全局信息的预测进行决策。通过模拟器St
摘 要:目前,研究人员着眼于车载边缘计算(vehicular edge computing,VEC)环境下高效应用和资源调度策略的研究,然而,这些应用和策略的实机验证往往受限于成本和时间,无法快速有效地进行。边缘/雾计算仿真器如iFogSim2的出现降低了实验成本,然而,高速移动车辆的连接切换和资源分配需求对边缘/雾计算仿真器在VEC下应用提出了挑战。因此,改进了iFogSim2,设计了支持高速移
摘 要:基于高效视频编码标准的x265编码器根据图像复杂度来分配比特,复杂图像往往包含运动变化较大的高频信息,其时域相关性较弱且消耗较多比特,导致分配给运动变化平缓图像的比特减少,进而影响编码质量且码率波动较大。同时,x265编码器采用独立率失真优化技术编码,忽略了编码单元间在时域上的相关性,进而损失编码性能。针对上述问题,提出一种基于时域依赖的编码树单元级码率控制算法。首先,根据迭代策略寻找最合
摘 要:针对传统SATA控制器存储系统性能受限、安全性不足问题,提出并设计了一款可实现PCIe(peripheral component interconnect express)与SATA(serial advanced technology attachment)协议传输数据互转,基于SM4算法实现本地数据安全存储的高速安全存储SoC(system of chip)芯片。通过构建合理的片内PC
摘 要:针对智能合约开发效率不高、安全漏洞频发等问题,提出了一种基于代码注释调优的智能合约自动生成方法。首先结合智能合约代码关联注释的语义信息,构建智能合约聚类分析模型,实现功能类似智能合约的快速精准聚类;接着划分注释关联的合约层、函数层、接口层等不同层次智能合约知识库,以聚类后的代码及注释信息为基础,构造多样化Prompt特征提示语句数据集;最后,以大语言模型ChatGLM2-6B为基础,借助P
摘 要:为了实现园区综合能源系统(PIES)的低碳化经济运行和多能源互补,解决碳捕集装置耗电与捕碳需求之间的矛盾,以及不确定性源荷实时响应的问题,提出了基于近端策略优化算法含碳捕集的综合能源系统低碳经济调度方法。该方法通过在PIES中添加碳捕集装置,解决了碳捕集装置耗电和捕碳需求之间的矛盾,进而实现了PIES的低碳化运行;通过采用近端策略优化算法对PIES进行动态调度,解决了源荷的不确定性,平衡了
摘 要:当今全球频繁出现自然灾害,针对一种无人机协同下的应急救灾计算卸载场景,提出一种带有协调器的边-端架构。综合考虑场景中的时延、能耗与无人机之间的负载均衡作为系统总代价,采用改进的深度强化学习算法APPO(advanced proximal policy optimization),以最小化系统总代价为目标进行卸载优化。任务的部分卸载相比二进制卸载可以更大程度上降低系统的总代价,APPO算法针
摘 要:面向B5G和6G的新兴网络架构和技术服务需求,将去蜂窝大规模多输入多输出(cell-free massive MIMO,CF-mMIMO)赋能于移动边缘计算(mobile edge computing,MEC),有助于处理分布式物联网中的计算密集型和延迟敏感型任务。针对CF-mMIMO辅助的MEC系统,在能量限制下意在最大限度地减少完成不同任务类型的计算任务的延迟。为完成以上目标,设计了一
摘 要:算力边缘服务器部署问题是构建算力网络的基础性问题。在实践过程中,算力边缘服务器靠近算力资源并为其加入算力网络提供接入服务。然而,算力资源的整体结构往往由现实需求所决定,并时刻随需求的变化而变化。在算力边缘服务器资源有限的情况下,如何合理部署算力边缘服务器,使得其能够保障算力网络有效地建设已成为当前各界所关注的热点。首先,对算力边缘服务器部署问题进行分析,并将其转换为带约束的多目标优化问题。
摘 要:为解决现有的差分隐私联邦学习算法中使用固定的裁剪阈值和噪声尺度进行训练,从而导致数据隐私泄露、模型精度较低的问题,提出了一种基于差分隐私的分段裁剪联邦学习算法。首先,根据客户端的隐私需求分为隐私需求高和低。对于高隐私需求用户使用自适应裁剪来动态裁剪梯度,而低隐私需求用户则采用比例裁剪。其次根据裁剪后阈值大小自适应地添加噪声尺度。通过实验分析可得,该算法可以更好地保护隐私数据,同时通信代价也
摘 要:为解决医疗数据的泄露或恶意被窜改以及医疗纠纷问题,提出一种基于区块链的医疗数据隐私保护方法。利用哈希算法加密患者的身份信息,治疗结果通过AES(advanced encryption standard)算法加密,而AES的密钥使用ECC(ellipse curve ctyptography)算法加密,所有的加密密钥、治疗结果、患者身份信息存储到联盟链上。采用群签名技术追溯签名医院,群管理员
摘 要:数据流行度去重方案中存在检测机构不诚实、数据存储不可靠等问题,提出一种面向去中心化存储的数据流行度去重模型。针对检测机构不诚实,模型结合区块链的不可窜改性与智能合约的不可抵赖性,将智能合约作为检测机构执行数据的重复性检测和流行度检测,保障了检测结果的真实性。针对数据存储不可靠问题,提出一种文件链存储结构。该结构满足数据流行度去重的要求,并通过添加辅助信息的方式,建立分布在不同存储节点中实现
摘 要:三维视觉理解旨在智能地感知和解释三维场景,实现对物体、环境和动态变化的深入理解与分析。三维目标检测作为其核心技术,发挥着不可或缺的作用。针对当前的三维检测算法对于远距离目标和小目标检测精度较低的问题,提出了一种面向多模态交互式融合与渐进式优化的三维目标检测方法MIFPR。在特征提取阶段,首先引入自适应门控信息融合模块。通过把点云的几何特征融入图像特征中,能够获取对光照变化更有辨别力的图像表
摘 要:为了解决语义分割应用到现实世界的下游任务时无法处理未定义类别的问题,提出了指称图像分割任务。该任务根据自然语言文本的描述找到图像中对应的目标。现有方法大多使用一个跨模态解码器来融合从视觉编码器和语言编码器中独立提取的特征,但是这种方法无法有效利用图像的边缘特征且训练复杂。CLIP(contrastive language-image pre-training)是一个强大的预训练视觉语言跨模
摘 要:尽管基于深度学习的图像着色方法已取得显著效果,但仍存在冗余色斑、着色暗淡和颜色偏差三个问题。为此,提出了一种结合细粒度自注意力(fine-grain self-attention,FGSA)的实例图像着色方法。具体地,首先将提取的特征图分为颜色和空间位置,并结合两者拟合提高颜色和图像空间位置的对应关系,以缓解冗余色斑;其次,受光学摄影HDR原理的启发,利用感受野小的卷积核增强或抑制图像的颜
摘 要:针对面部表情识别在复杂环境中遮挡和姿态变化问题,提出一种稳健的识别模型FFDNet(feature fusion and feature decomposition net)。该算法针对人脸区域尺度的差异,采用多尺度结构进行特征融合,通过细粒度模块分解和细化特征差异,同时使用编码器捕捉具有辨别力和微小差异的特征。此外还提出一种多样性特征损失函数,驱动模型挖掘更丰富的细粒度特征。实验结果显示
摘 要:为解决基于视觉的情感识别无法捕捉人物所处环境和与周围人物互动对情感识别的影响、单一情感种类无法更丰富地描述人物情感、无法对未来情感进行合理预测的问题,提出了融合背景上下文特征的视觉情感识别与预测方法。该方法由融合背景上下文特征的情感识别模型(Context-ER)和基于GRU与Valence-Arousal连续情感维度的情感预测模型(GRU-mapVA)组成。Context-ER同时综合了
摘 要:针对室内场景图像语义分割结果不精确、显著图粗糙的问题,提出一种基于多模态特征优化提取和双路径引导解码的网络架构(feature regulator and dual-path guidance,FG-Net)。具体来说,设计的特征调节器对每个阶段的多模态特征依次进行噪声过滤、重加权表示、差异性互补和交互融合,通过强化RGB和深度特征聚合,优化特征提取过程中的多模态特征表示。然后,在解码阶段