摘 要:相机位姿估计是通过估计相机的位置坐标和环绕三个坐标轴的角度偏转,来描述其相对于给定场景的方向和位置,是自动驾驶、机器人技术等任务的重要组成部分。为帮助研究人员在相机位姿估计领域的研究,对相机位姿估计的研究现状和最新进展进行梳理。首先介绍了相机位姿估计的基本原理、评价指标和相关数据集;然后从场景关系搭建和相机姿态解算两个关键技术出发,对两阶段模型结构方法和单通道模型结构方法进行阐述总结,分别
摘 要:神经辐射场(NeRF)是一种面向三维隐式空间建模的深度学习模型,在表示和渲染三维场景领域具有重要价值。然而由于神经辐射场算法训练过程复杂、需要大量的计算资源和时间等,其可用性和实用性受到一定限制,如何针对神经辐射场的痛点问题进行优化是当前计算机视觉等领域研究的热点之一。此研究旨在对神经辐射场的优化和应用进行全面综述。首先,在深入解析神经辐射场基本原理的基础上,从渲染质量、计算复杂度、位姿等
摘 要:近年来,区块链在学术界和工业界都受到越来越多的关注。在不同应用中部署区块链时,区块链的隐私性仍是备受争议的焦点问题。系统地回顾了当前区块链中隐私保护的方案和机制,给出了区块链的安全性和隐私性的见解。首先,对区块链技术的主要功能、类型和隐私定义进行初步介绍,并分析了其面临的隐私问题;然后,从技术角度出发,将区块链隐私保护技术分为去中心化身份认证、隐私协议、加密技术和混淆技术四大类,以及去中心
摘 要:为了在保护数据隐私的前提下,充分利用异构的工业物联网节点数据训练高精度模型,提出了一种基于区块链的隐私保护两阶段协作学习系统。首先,使用分组联邦学习框架,根据参与节点的算力将其划分为不同组,每组通过联邦学习训练一个适合其算力的全局模型;其次,引入分割学习,使节点能够与移动边缘计算服务器协作训练更大规模的模型,并采用差分隐私技术进一步保护数据隐私,将训练好的模型存储在区块链上,通过区块链的共
摘 要:传统的中心化联邦学习需要一个受信赖的中央服务器负责模型聚合,容易产生单点故障。现有的去中心化联邦学习方案通常在每个迭代周期临时选举出一个节点负责模型的聚合,但不能保证被选节点的完全可信。为了解决上述问题,提出一种基于区块链的联邦学习模型聚合方案,把模型聚合工作交由众多矿工而非某个单一节点负责,矿工提出不同的候选聚合方案并生成相应区块,然后根据设计的准确率最高链原则确定主链,以达成节点之间的
摘 要:针对汽车产业链资源信息多源异构、跨平台交互建立困难的问题,提出了一种基于区块链的跨域权限委托方法(BCPDM)。该方法首先将区块链技术与基于属性的访问控制(ABAC)模型相结合,并建立权限过滤功能,以避免平台间权限冲突;其次,引入权限收回机制,提高模型授权的灵活性,避免长时间授权可能导致的信息泄露问题,旨在以灵活、动态、高效和可信的方式解决复杂汽车产业链多域环境下的访问授权问题。经安全性分
摘 要:针对邻域粗糙集模型受邻域参数影响大、刻画样本信息时不够精细等问题,提出了一种基于最大联盟理论的粗糙集模型。在标准化邻域信息系统后,引入最大联盟集来描述邻域颗粒信息,使得邻域粗糙集模型对信息的划分更加精细,从而显著降低了边界域的不确定性。将该模型与三支聚类相结合,设计了一种基于最大联盟粗糙集的三支聚类算法。在6个UCI公共数据集上进行对比实验,结果表明,所提算法相较于对比算法具有更好的聚类质
摘 要:周期高效用序列模式挖掘(PHUSPM)因其能够发现时间序列中更具实际价值的规律性模式而备受关注,但现有的PHUSPM算法难以有效地处理数据集的增量更新,且未考虑大规模数据下算法的向下闭包性和复杂性。针对该问题,提出了IncPUS-Miner算法,有效地实现了周期高效用序列模式(PHUSPs)的增量挖掘。IncPUS-Miner引入了一种名为pu-tree的新型数据结构,每个树节点对应一个更
摘 要:在现有的多视图聚类研究中,大多数方法没有考虑多视图的多样性,也没有关注数据的高阶邻域信息,导致聚类结果不够准确,难以挖掘数据集的底层信息。为了解决这些问题,提出了基于多样性约束和高阶信息挖掘的多视图聚类算法(MVCDCHO)。首先设计了视图间多样性测量的方法,利用多样性的约束保留数据的交集特征,同时去除多视图的差异特征;然后提出了一种挖掘视图高阶信息的方法,要求多视图的交集特征接近混合相似
摘 要:针对电子病历构建过程中难以捕捉信息抽取任务之间的关联性和医患对话上下文信息的问题,提出了一种基于Transformer交互指导的联合信息抽取方法,称为CT-JIE(collaborative Transformer for joint information extraction)。首先,该方法使用滑动窗口并结合Bi-LSTM获取对话中的历史信息,利用标签感知模块捕捉对话语境中与任务标签相
摘 要:实体漏标是目前远程监督命名实体识别(distantly supervised named entity recognition,DS-NER)存在的一个难点问题。训练集中的漏标实体在模型训练中提供了不正确的监督信息,模型将在后续预测实体类型时更倾向于将该类实体预测为非实体,导致模型的实体识别和分类能力下降,同时影响了模型的泛化性能。针对这一问题,提出了融合实体特征相似度计算负采样命名实体识
摘 要:文档级事件抽取面临论元分散和多事件两大挑战,已有工作大多采用逐句抽取候选论元的方式,难以建模跨句的上下文信息。为此,提出了一种基于多粒度阅读器和图注意网络的文档级事件抽取模型,采用多粒度阅读器实现多层次语义编码,通过图注意力网络捕获实体对之间的局部和全局关系,构建基于实体对相似度的剪枝完全图作为伪触发器,全面捕捉文档中的事件和论元。在公共数据集ChFinAnn和DuEE-Fin上进行了实验
摘 要:为提高物流配送效率,考虑时间窗、无人机换电以及无人机多点连续配送等因素,提出了一种带时间窗的车辆与无人机协同配送问题,并设计一种带局部搜索的混合粒子群算法进行求解。该算法以混合粒子群算法为核心,通过构建高效的编解码策略实现了问题解空间到算法搜索空间的转换。进一步,该算法融合单点插入策略、车辆更换策略、无人机更换策略组成局部搜索策略,以此提高算法寻优能力。实验结果表明:所提模型比纯车辆配送的
摘 要:模具组合加工、电子产品合检等带来不同工件强制同机并行作业,这打破了作业车间调度同一机器不能在同一时刻处理不同工件的约束。为解决该类作业车间调度问题,提出一种自适应混合初始化遗传算法对其进行求解。首先,将该问题定义为考虑强制同机并行作业的广义作业车间调度;利用混合整数规划法以最小化最大完工时间为优化目标建立优化模型。然后,新设计了相应的编码、解码以支持同机并行作业约束下可行调度方案的表达和约
摘 要:为解决更符合现实情形的模糊质检时间柔性作业车间动态调度问题,以最小化完工时间为目标,立足紧急插单、机器在空载运行时发生故障和机器在加工工件时发生故障的三种故障情形,建立了带模糊质检时间的机器故障、紧急插单重调度模型。设计了基于元胞自动机邻域搜索和随机重启爬坡算法的改进遗传算法求解模型,即针对车间调度问题中存在的订单排序和机器选择双决策问题特征,设计包含工序码和机器码的双层编码方案,并基于遗
摘 要:为解决现有公交客流预测方法多数利用预定义的图结构进行空间建模,对交通状况变化所引起客流波动考虑不充分,无法捕捉短时动态的空间依赖关系问题,提出一种自适应平衡静动态联合网络(ASDNet)模型。首先,利用时间卷积网络捕获序列的时间相关性;其次,利用图卷积捕捉站点之间整体空间信息,采用动态图同构网络捕捉相邻时隙动态图之间隐藏的动态依赖关系;最后,通过自适应平衡机制自适应地调节静动态联合网络之间
摘 要:为提高AGV自动拣货系统作业效率、降低作业成本,在剖析造成系统拥堵的关键影响因素基础上,提出考虑负载量均衡的AGV任务分配双层规划模型,上层考虑总成本最小,下层通过构建多目标函数来最小化系统负载量标准差和AGV空闲率。针对传统GA求解任务分配问题效率低、易陷入局部最优等问题,提出了一种改进自适应遗传算法(SAGA),引入sigmoid函数用于适应度值的转换,并参与到自适应调整交叉变异算子的
摘 要:维持种群多样性和提高算法搜索效率是多模态多目标优化亟需解决的两大问题。为解决以上问题,提出了一种基于分区搜索和强化学习的多模态多目标头脑风暴优化算法(MMBSO-ZSRL)。在MMBSO-ZSRL中,首先将决策空间分解为多个子空间以降低搜索难度和维持种群多样性;然后,使用SARSA(state-action-reward-state-action) 算法来平衡头脑风暴算法的全局探索和局部开
摘 要:近年来,对多变量时间序列的异常检测在各领域中逐渐突显出其重要性。然而,由于多变量时间序列的时空依赖性以及采集所存在的噪声干扰,使得模型学习到的分布与真实分布存在一定的偏差,进而影响检测性能。为了解决以上问题,提出一种结合对抗互信息的多变量时间序列抗噪异常检测模型(RADAM)。通过设计对比学习机制来达到多变量时间序列全局信息和局部信息的互信息最大化,以此来学习多变量时间序列的时间与空间依赖
摘 要:基于元学习的单源域泛化(single domain generalization,SDG)已成为解决领域偏移问题的有效技术之一。然而,源域和增强域的语义信息不一致以及域不变特征和域相关特征难以分离,使SDG模型难以实现良好的泛化性能。针对上述问题,提出了一种单源域泛化中基于域增强和特征对齐的元学习方案(meta-learning based on domain enhancement an
摘 要:逻辑回归(LR)作为监督学习的二元分类广义线性分类器,在处理线性数据方面表现出结构简单、解释性强,拟合效果好的特点。然而,当面对高维、不确定性和线性不可分数据时,逻辑回归的分类效果受到限制。针对逻辑回归的固有缺陷,引入粒计算理论,借助粒化的优势提出一种新型的逻辑回归模型:旋转粒逻辑回归。通过引入旋转粒化理论,在特征两两组合形成的平面坐标系上旋转不同角度,构建旋转粒子,多平面坐标系上粒化构造
摘 要:鉴于狼群算法在单目标优化问题上的优越表现,结合狼群的生物习性将其运用到多目标优化问题上,提出一种精英引导和信息交互的多目标狼群算法(MOWPA-EGII)。首先,提出精英引导策略,利用外部档案中的精英狼和当前子种群的头狼共同引导种群移动,让人工狼均匀地分布在整个搜索空间,增强算法的全局搜索能力;其次,设计信息交互机制,模拟狼群捕猎过程中的信息传递,具有不同优势的个体可以相互传递信息,保证狼
摘 要:基于知识图谱的主流推荐模型在融合高阶信息时较少考虑源节点与目标节点之间的关系,在复杂网络场景中易引入过多噪声信息进而影响推荐性能。针对此问题提出一种融合元图邻域的知识图谱推荐模型,通过构建并融合元图邻域降低噪声信息的影响,提升推荐性能。首先,基于元图相似度生成源节点的初始相似序列,利用自注意力网络与线性网络对初始序列进行特征增强,以增强后的特征向量组成的集合构造节点的元图邻域。其次,基于用
摘 要:联邦学习的提出为跨数据孤岛的共同学习提供了新的解决方案,然而联邦节点的本地数据的非独立同分布(Non-IID)特性及中心化框架在参与方监管、追责能力和隐私保护手段上的缺失限制了其大规模应用。针对上述问题,提出了基于区块链的可信切片聚合策略(BBTSA)和联邦归因(FedAom)算法。FedAom引入归因思想,基于积分梯度法获取归因,从而定位影响模型决策行为的参数,分级考虑参数敏感性,在局部
摘 要:在联邦学习环境中,客户端数据的质量是决定模型性能的关键因素。传统的评估方法依赖于在中心节点的验证集上衡量客户端模型的损失,从而对数据质量进行评估。在缺乏有效验证集的情况下,数据质量的评估是困难的。为了解决上述问题,提出了一种根据同伴信息进行模型质量评分的方法。通过对客户端上传的模型参数进行裁剪处理,基于正确评分规则的相关理论设计模型质量评分机制,并在此基础上优化聚合算法,降低低质量客户端对
摘 要:为了实现对高延时、非线性和强耦合的复杂工业过程稳定准确的连续控制,提出了一种基于二阶价值梯度模型强化学习的控制方法。首先,该方法在模型训练过程中加入了状态价值函数的二阶梯度信息,具备更精确的函数逼近能力和更高的鲁棒性,学习迭代效率更高;其次,通过采用新的状态采样策略,可以更高效地利用模型进行策略学习。最后,通过在OpenAI的Gym公共实验环境和两个工业场景的仿真环境的实验表明:基于二阶价
摘 要:为解决心血管患者日常康复训练依赖于康复中心专业医务人员现场指导的问题,围绕获得支撑心血管患者自主康复训练的动作评估系统,提出了基于人体骨骼关键点的心血管患者康复训练动作评估方法(ASRT-PHS)。首先,根据心血管患者的康复训练动作规范拍摄构建了康复训练动作数据集;然后,引入基于深度学习的检测器和姿态估计器采集人体位置信息与人体关键点信息,并将提取结果输入到卷积神经网络中进行动作识别;接着
摘 要:针对众筹融资过程中存在的信息不对称问题,基于前景理论中处理不确定信息的决策效用规则,结合众筹项目信息披露与投资者效用分析,构建了一个新的众筹绩效预测模型。为解决实际应用中特征选择过多的问题,引入了一种基于神经网络算法的稀疏性特征选择方法,该方法能够帮助众筹平台聚焦于核心特征,以更好地理解和预测投资者行为。对Kickstarter平台上超过15万个项目的实证分析结果表明:考虑投资者风险感知和
摘 要:精准的降水临近预报对日常生活至关重要,但现行预报模型的准确度有待进一步提升。为此,提出一种新的预报模型BTPN。该模型引入双向Transformer,从时空序列的正逆方向提取特征,捕获关键信息,减少时空特征丢失;使用卷积Transformer模块结合卷积的局部编码和Transformer的全局编码特性,强化时空信息提取和关联性,缓解时空长时序信息丢失问题;结合细节提取模块,有助于减少局部细
摘 要:日志主要记录软硬件的运行信息,通过查看系统日志,可以找到系统出现的问题及原因,确保系统的稳定性和正常运行。日志解析的目的是将半结构化的原始日志解析为可阅读的日志模板,现有解析方法往往只注重于对原始日志的解析,而忽略了后期模板处理,导致结果的精度不能进一步提高。自此,提出了一种日志解析方法FMLogs(logs parsing based on frequency and MinHash a
摘 要:面向路径覆盖的测试是软件测试的重要方法之一。如何快速生成高质量测试数据使其满足路径覆盖要求,一直是研究热点问题。为解决现有智能优化方法运行时间长、探索过程不稳定以及生成测试用例冗余的问题,提出一种基于强化学习思想的选择策略,用于以路径覆盖为准则的测试数据生成中。通过将可执行路径定义为智能体状态,算法每一轮迭代更新后的数据选择定义为智能体动作,并将奖励函数与状态变化关联,在状态更新过程中使用
摘 要:现有的基于通信学习的多智能体路径规划(multi-agent path finding,MAPF)方法大多可扩展性较差或者聚合了过多冗余信息,导致通信低效。为解决以上问题,提出干扰者鉴别通信机制(DIC),通过判断视场(field of view,FOV)中央智能体的决策是否因邻居的存在而改变来学习排除非干扰者的简洁通信,成功过滤了冗余信息。同时进一步实例化DIC,开发了一种新的高度可扩展
摘 要:边缘计算将存储和计算资源下沉到网络边缘,用户可将时延敏感型和计算密集型应用程序的任务卸载到边缘服务器执行,从而降低时延和能耗。已有的任务卸载研究通常忽略卸载任务的异构性,且默认边缘服务器缓存的服务能够长期满足用户的服务需求。然而,不同的任务需要不同的服务提供执行环境,且边缘服务器资源受限只能部署少量服务。因此,为了最小化时延和能耗(即成本),提出了一种联合服务更新和云边端协作的异构任务卸载
摘 要:针对非协作通信环境中,自动调制识别(automatic modulation recognition,AMR)在低信噪比下泛化能力有限、分类精度不高的问题,提出一种由卷积神经网络、门控循环单元和深度神经网络组成的模型—CGDNN(convolutional gated recurrent units deep neural networks)。首先对I/Q采样信号进行小波阈值去噪,降低噪声
摘 要:利用自编码器模型检测恶意模型更新的联邦学习框架是一种优秀的投毒攻击防御框架,但现有的基于自编码器的模型存在训练困难、异常检测能力不足等问题。针对以上问题,提出了一种基于β-VAE的联邦学习异常更新检测算法:服务器端通过抑制训练样本的随机属性,生成更稳定的训练数据集,并使用该数据集对β-VAE异常检测模型进行即时训练。利用该模型计算客户端上传的任务模型更新的异常分数,然后根据动态阈值来检测并
摘 要:针对现有人脸反欺骗模型面对不同应用场景识别精度低、泛化性能不佳的问题,引入解纠缠表示学习,提出一种基于解纠缠表示学习的人脸反欺骗方法。该方法采用U-Net架构和ResNet-18作为编/解码器。首阶段训练中,通过输入真实样本使得编码器仅学习到真实样本相关信息。第二阶段,构建对抗性学习网络,输入不具标签的样本,将预训练的编码器输出和新编码器输出进行特征融合,由解码器重建图像,在鉴别器中与原始
摘 要:现有自适应视频隐写的成本分配方法主要针对特定变换系数,导致容量较低。此外,失真漂移是HEVC(high efficiency video coding)视频隐写面临的一大挑战。因此,结合HEVC视频编码的帧内帧间过程,提出了一种代价分配方法,以实现高容量、低失真传递的高性能视频自适应隐写。首先,该方法针对HEVC视频编码中的离散正弦变换特征进行研究,分析了这些系数在受到扰动后所产生的误差传
摘 要:现有基于卷积神经网络主要关注图像重构的精度,忽略了过度参数化、特征提取不充分以及计算资源浪费等问题。针对上述问题,提出了一种轻量级多频率特征提取网络(MFEN),设计了轻量化晶格信息交互结构,利用通道分割和多模式卷积组合减少参数量;通过分离图像的低频、中频以及高频率信息后进行特征异构提取,提高网络的表达能力和特征区分性,使其更注重纹理细节特征的复原,并合理分配计算资源。此外,在网络内部融合
摘 要: 现有船舶目标检测算法大部分只是基于传统目标检测算法的优化改进,没有考虑船舶具有尺度长宽比例的外观特性,在多尺度目标检测中出现漏检误检问题。为了解决此问题,在YOLOXs基础上,提出一种尺度适应性感受野的船舶检测方法(SAF-YOLOX)。首先,对主干网络提取的不同特征层通过构建双向特征金字塔进行特征融合,增强每个尺度下的特征描述力;同时,设计自适应特征强化模块,抑制不同尺度的特征融合引
摘 要:针对视觉SLAM在动态场景下鲁棒性不足的问题,提出一种适用于动态场景下的视觉SLAM算法——SAD-SLAM。该算法首先使用GCNv2网络进行特征提取,以获取分布均匀的特征点集合,并加快提取速度。然后使用YOLOv8-seg语义分割网络完成场景内物体的检测,并对推理得到的物体按照是否具备自主运动能力进行划分。同时提出一种语义关联方法,通过对潜在动态物体进行2D和深度层面过滤,以确定潜在动态
摘 要: 针对传统SLAM算法在动态环境中会受到动态特征点的影响,导致算法定位精度下降的问题,提出了一种融合语义信息的视觉惯性SLAM算法SF-VINS(visual inertial navigation system based on semantics fusion)。首先基于VINS-Mono算法框架,将语义分割网络PP-LiteSeg集成到系统前端,并根据语义分割结果去除动态特征点;其
摘 要:针对工业应用场景下缺少缺陷样本的问题,提出了一种仅需要极少缺陷样本的金属工件表面缺陷分割方法。该方法结合了图像生成技术和半监督学习策略,通过利用极少缺陷图像提取的小尺寸缺陷图像来训练缺陷生成模型,然后将生成的缺陷图像嵌入到正常图像中以实现数据增广。其次,采用半监督学习策略训练分割网络,以减小生成数据与真实数据分布之间的差异对模型的不良影响。在真实的金属工件机器视觉检测系统上的验证结果表明,
摘 要:虚拟说话人生成是人工智能领域的一个重要研究方向,旨在通过计算机生成具有逼真语音的虚拟说话人。然而,现有方法往往忽视情绪表达、生成的人脸图像面部细节缺乏真实感,限制了虚拟说话人的表现能力和交互性。为解决这一问题,提出一种基于Transformer的生成对抗网络(generative adversarial network,GAN)方法,用于生成具有不同情绪的虚拟说话人(GANLTB)。该方法
摘 要:准确的皮肤病变自动分割对于协助医生临床诊断和治疗至关重要。针对现有卷积结构能提取局部特征信息但无法建模长程依赖关系,而Transformer能提取全局上下文信息但存在细节信息丢失的问题,提出了一种融合CNN和Transformer的并行多尺度自动分割网络PDTransCNN。首先以基于ResNet34的CNN分支和Transformer分支并行提取皮肤病图像的特征信息,构建多级局部相关性和